

Welcome to the Dawn of Open-Source Networking.™

Linux IP Routers

Bob Gilligan gilligan@vyatta.com

Outline

- About Vyatta: Open source project, and software product
- Areas we're working on or interested in working on
- Some of our performance testing results
- Conclusions

Vyatta - The Service Router, Redefined Integrated, Yet Open

Industry-Standard 32-bit x86

Vyatta: Scalable Software Performance

Twice The Performance

Half The Price

Target Markets: Mid-range Router / Firewall / VPN

Performance

Vyatta Product

Linux Software Distribution

- Open Source Project and Product
 - Community (free) and Supported (pay) versions available
 - "Appliance" version also available.
 - Open bugzilla bug database, wiki, user group lists, docs
 - Open Git source repository
- Getting Community Version:
 - Start at: http://www.vyatta.com/community/
 - Download and burn live CD: http://www.vyatta.com/download/
 - Full source at: <u>http://suva.vyatta.com/git/</u>

Software Focus Areas

- Interested in working with the community on features relevant to running Linux as a router
 - Router issues not necessarily the same as server or desktop issues
- Routing protocol performance: XORP Package
 - Fast convergence large routing tables
 - Software optimization
 - MP scaling
- IP Forwarding performance
 - Performance with large routing tables (> 200,000 routes)
 - Kernel routing table (FIB) hash vs. TRIE tree implementation
 - Performance forwarding min-size (64 byte) packets
 - MP scaling: Efficiently take advantage of dual/quad core processors
 - Most new machines will be dual/quad core
 - Scheduling IP forwarding and user-level routing protocols
 - Router runs both; Both are CPU intensive
 - Need to ensure both get adequate CPU under heavy load
 - Efficiently and fairly on MPs

Hardware Focus Areas

Features NICs should support:

- PCI-e, especially for serial cards
 - Some new machines support only PCI-e
 - Older serial/WAN NICs are still PCI-X
- Multiple MAC addresses
 - For MAC-address takeover
 - Used by Virtual Router Redundancy Protocol (VRRP) to provide High Availability
- NAPI support
- VLAN/Tagging support
- IPsec performance
 - Raw encryption performance
 - Hw encryption engine performance vs. more cores

Testing results: IP Forwarding Performance

Two standardized router forwarding performance tests:

- Zero-Loss Throughput Test
 - Reduce offered rate until all packets get through (higher is better)
- Packet Loss Test
 - At 100 % offered rate, measure packet loss rate at various packet sizes (lower is better)
- Both tests defined in the IETF Benchmark Methodology Spec (RFC 2544)
- Both measure at range of packet sizes (64 bytes 1518 bytes)

Test configuration

- SmartBits 600B network traffic generator
- 2 GbE links Bidirectional test

Testing results: IP Forwarding Performance

Platforms tested:

- 1. Dell PE860:
 - Celeron 336: 2.8 GHz CPU, 256 KB L2 cache
 - 533 MHz FSB
 - 2 x On-board BCM 5721 NIC
 - PCI-e x1 lane interconnect to each NIC
- 2. SuperMicro PDSM4+ motherboard:
 - Dual-core Pentium-D 935: 3.2 GHz CPUs, 2 MB L2 cache
 - 800 MHz FSB
 - Off-board 2-port Intel 82571 NIC
 - PCI-e x4 lane interconnect to NIC
- Linux 2.6.20 kernel
 - No firewall rules
 - No NAT

Zero-Loss Throughput Comparison

Loss Rate Test Comparison

Observations

- "Low end" server platforms deliver excellent IP forwarding performance
- Forwarding performance correlates with CPU performance
 - Higher performance CPU \rightarrow higher throughput rate, lower loss rate
 - At small packet sizes, when CPU is pegged
- NAPI appears to be working
 - Interrupts moderated when CPU is pegged
- One issue to be investigated:
 - Only one CPU utilized on dual-core Pentium-D platform

Conclusion

Linux on x86 server platform makes a great IP router!

- "Twice the performance at half the price".
- Vyatta is interested in working with the community to improve features relevant to IP routing

